Tractable models of self-sustaining autocatalytic networks

نویسندگان

  • Mike Steel
  • Wim Hordijk
چکیده

Self-sustaining autocatalytic networks play a central role in living systems, from metabolism at the origin of life, simple RNA networks, and the modern cell, to ecology and cognition. A collectively autocatalytic network that can be sustained from an ambient food set is also referred to more formally as a ‘Reflexively Autocatalytic F-generated’ (RAF) set. In this paper, we first investigate a simplified setting for studying RAFs, which are nevertheless relevant to real biochemistry and allows for a more exact mathematical analysis based on graph-theoretic concepts. This, in turn, allows for the development of efficient (polynomial-time) algorithms for questions that are computationally NP-hard in the general RAF setting. We then show how this simplified setting for RAF systems leads naturally to a more general notion of RAFs that are ‘generative’ (they can be built up from simpler RAFs) and for which efficient algorithms carry over to this more general setting. Finally, we show how classical RAF theory can be extended to deal with ensembles of catalysts as well as the assignment of rates to reactions according to which catalysts (or combinations of catalysts) are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random biochemical networks: the probability of self-sustaining autocatalysis.

We determine conditions under which a random biochemical system is likely to contain a subsystem that is both autocatalytic and able to survive on some ambient 'food' source. Such systems have previously been investigated for their relevance to origin-of-life models. In this paper we extend earlier work, by finding precisely the order of catalysation required for the emergence of such self-sust...

متن کامل

20 04 Random Autocatalytic Networks

We determine conditions under which a random biochemical system is likely to contain a subsystem that is both autocatalytic and able to survive on some ambient 'food' source. Such systems have previously been investigated for their relevance to origin-of-life models. In this paper we extend earlier work, by finding precisely the order of catalysation required for the emergence of such self-sust...

متن کامل

Random autocatalytic networks

We determine conditions under which a random biochemical system is likely to contain a subsystem that is both autocatalytic and able to survive on some ambient `food' source. Such systems have previously been investigated for their relevance to origin-of-life models. In this paper we extend earlier work, by finding precisely the order of catalysation required for the emergence of such self-sust...

متن کامل

Required Levels of Catalysis for Emergence of Autocatalytic Sets in Models of Chemical Reaction Systems

The formation of a self-sustaining autocatalytic chemical network is a necessary but not sufficient condition for the origin of life. The question of whether such a network could form "by chance" within a sufficiently complex suite of molecules and reactions is one that we have investigated for a simple chemical reaction model based on polymer ligation and cleavage. In this paper, we extend thi...

متن کامل

Autocatalytic Sets Extended: Dynamics, Inhibition, and a Generalization

Background: Autocatalytic sets are often considered a necessary (but not sufficient) condition for the origin and early evolution of life. Although the idea of autocatalytic sets was already conceived of many years ago, only recently have they gained more interest, following advances in creating them experimentally in the laboratory. In our own work, we have studied autocatalytic sets extensive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018